PRELIMINARY COMMUNICATION

BIS(TRIPHENYLPHOSPHINE)ALLENEPLATINUM(0) COMPLEXES

SEI OTSUKA, AKIRA NAKAMURA and KAZUHIDE TANI
Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka (Japan) (Received April 30th, 1968: in revised form August 29th, 1968)

The nature of phosphorus-metal bonds in low-valent post-transition metal phosphine or phosphite complexes is now well understood in terms of σ-donation from the ligand reinforced with a synergic π-back donation from the metal. In only a few cases, however, information such as the bond length or force constant is available to support the π-bond character. We found that phosphine(allene)platinum(0) complexes, Pt(allene)$\left(\mathrm{PR}_{3}\right)_{2}$, are a particularly relevant system for the NMR spectroscopic studies to obtain further insight into the nature of the $\mathrm{Pt}-\mathrm{P}$ bond as well as of the Pt -allene bonding.

Bis(triphenylphosphine) (allene)platinum(0), $\left[\mathrm{Pt}_{\mathrm{t}}\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (I), was obtained as colorless, thermally stable needles, m.p. 152-154 ${ }^{\circ}$ (dec.), when cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was reduced with hydrazine hydrate in the presence of allene at $70-80^{\circ}$, in an autoclave using 95\% ethanoi as a solvent. Similarly, bis(triphenylphosphine) (1,3 -diphenylallene)platinum(0), $\left[\mathrm{Pt}(\mathrm{PhCH}=\mathrm{C}=\mathrm{CHPh})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (II), was obtained as bright yellow cubic crystals m.p. $170-182^{\circ}$ (dec.). Molecular weight measurements and elemental analyses for these two complexes agree well with calculated values.

TABLE 1
100 Mc NMR SPECTRA ${ }^{a}$ OF Pt(allene) $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{IN} \mathrm{CDCl}_{3}$ AT 22.5°

Compound		Chem. shift τ (multiplicity)	Coupling constant (cps)
$\underset{\mathrm{I}}{\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2} \text { (free) }}$		5.30 (singlet) ${ }^{\text {a }}$	$J\left(\mathrm{Pt}-\mathrm{H}^{\mathrm{a}}\right)=65$
	$\mathrm{H}^{\mathbf{a}}{ }^{\text {b }}$	7.98 (triplet) ${ }^{\text {b }}$ (${ }^{\text {a }}$ (doublet)	$J\left(\mathrm{P}^{\mathrm{a}}-\mathrm{H}^{\mathrm{b}}\right)=12.5$
	$\begin{aligned} & \mathbf{H}^{\mathbf{b}} \\ & \hline \end{aligned}$	5.46 (doublet) $^{\text {c }}$ (${ }^{\text {c }}$ (doublet)	$\begin{aligned} & J\left(\mathrm{P}^{\mathrm{a}}-\mathrm{H}^{\mathrm{b}}\right)=12.5 \\ & J\left(\mathbf{P}^{\mathrm{a}}-\mathrm{H}^{\mathrm{C}}\right)=22.5 \end{aligned}$
$\mathrm{PhCH}=\mathrm{C}=\mathrm{CHPh}$ (free) II	$\mathrm{H}^{\mathbf{a}}$	3.44 (singlet) 6.25 (triplet) ${ }^{b, d}$	$J\left(\mathrm{Pt}-\mathrm{H}^{\mathrm{a}}\right)=65$
			$J\left(\mathrm{P}^{\mathrm{a}}-\mathrm{H}^{\text {a }}\right.$) $=5.5$
			$J\left(\mathrm{P}^{\mathrm{b}}-\mathrm{H}^{\text {a }}\right.$) $)=9.5$
			$J\left(\mathrm{H}^{\mathrm{a}}-\mathrm{H}^{\mathrm{b}}\right)=3.0$
	$\mathrm{H}^{\text {b }}$	4.18 (doublet) $^{\text {c }}$	$J\left({ }^{\text {a }}-H^{\mathrm{b}}\right)=12.5$

[^0]The IR spectrum of ((nujol mull) shows a weak band at $1680 \mathrm{~cm}^{-1}$ due to $\nu(\mathrm{C}=\mathrm{C}=\mathrm{C})$ of coordinated allene, and a strong one at $855 \mathrm{~cm}^{-1}$ assignable to $\delta\left(=\mathrm{CH}_{2}\right)$. These bands are absent in II (The similar IR spectral characteristic is found in the related $\mathrm{Rh}^{\mathrm{I}}(-)$ allene complexes ${ }^{1}$).

The NMR spectra for I and II summarized in Table 1 are best explained by a square planar structure depicted below. It should be noted that the uncoordinated olefinic carbon atom with H^{b} and R^{c} also lies in the same plane.

I, $\mathrm{R}^{\mathrm{a}}=\mathrm{H}^{\mathrm{a}}, \mathrm{R}^{\mathrm{c}=\mathrm{H}^{\mathrm{c}} .}$
II, $\mathrm{R}^{\mathrm{a}}=\mathrm{R}^{\mathrm{c}}=\mathrm{C}_{6} \mathrm{H}_{5}$

The highest field resonance for I occurs at $\tau 7.98$ showing a large ${ }^{195} \mathrm{Pt}-{ }^{1} \mathrm{H}$ coupling constant (62.5 cps) comparable to values for the $\mathrm{Pt}-\mathrm{CH}_{3}$ coupling constant as found in methylplatinum complexes ${ }^{24}$. The large up-field shift from free allene ($\Delta \tau=2.7$) as well as the large spin-spin coupling with ${ }^{195} \mathrm{Pt}$ are consistent with the idea of enhanced σ-bonding between Pt and the two carbons of allene. The signals at $\tau 5.46$ and $\tau 4.00$ assigned to H^{b} and H^{c}, respectively, are both split into doublets by coupling with ${ }^{31} \mathrm{P}(S=$ $1 / 2$). The doublet splitting affords support for the square planar structure but not for a tetrahedral structure. The latter structure involving two equivalent phosphorus nuclei requires triplet splitting for the H^{b} and H^{c} resonances.

The surprisingly large coupling constant (22.5 cps) for the long-range interaction between $P^{\mathbf{a}}$ and H^{c} in I renders the σ-interaction mechanism unlikely for such an extended system. It appears that a $\sigma \pi$-interaction facilitated through a conjugated π-bond system, $\mathrm{Pa}=\mathrm{Pt}-\mathrm{C}=\mathrm{C}-\mathrm{H}$, will rationalize the large long-range coupling. This may be the first reported example for a $\pi(3 d-5 d)-\pi(2 p-2 p)$ conjugation that is effective for a nuclear spin interaction. The long-range coupling constant is smaller in $J\left(\mathrm{P}^{\mathrm{a}}-\mathrm{H}^{\mathrm{b}}\right)$ than in $J\left(\mathrm{P}^{\mathrm{a}}-\mathrm{H}^{\mathrm{c}}\right)$. It is to be noted that the trans P^{a} couples with the two protons more effectively than does the cis Pb . This is in accord with the previous observations in many octahedral or square planar complexes ${ }^{5}$, specifically in a structurally related complex, $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}{ }^{4}$.

In the 1,3-diphenylallene complex II, the phenyl group at the uncoordinated carbon will occupy the R^{c} site for steric reason (The two sites at C^{1} are equivalent). The proposed structure is consistent with the observed chemical shift ($\tau 4.18$) of the lower field absorption that is assigned to H^{b}; if the phenyl group occupies the H^{b} site a resonance for the proton at the R^{C} site would appear at a lower field than that for the free ligand ($\tau 3.44$) as in I. The structure receives further support from coupling schemes of the H^{b} proton shown in Table 1.

The substitution of two protons in I with phenyl groups simplifies the spectrum and the septets at $\tau 6.25$ arise from overlap of the splittings due to coupling of H^{a} with H^{b}, P^{a}, and P^{b}. Here again, the long-range coupling between H^{b} and $\mathrm{P}^{\mathrm{a}}(12.5 \mathrm{cps})$ is greater than the coupling of H^{2} with the two phosphorus atoms. If the proposed structure is correct, as
it seems to be, the Pt atom may be regarded formally as a $5 d^{8}$ ion assuming a rigid planar tetra-coordinated configuration. This view explains the thermal stability observed for I and II.

Studies on the effect of nature of phosphorus-containing ligands upon these spinspin interactions in this type of complexes are now in progress.

REFERENCES

1 S. Otsuka, A. Nakamura and K. Tani, to be published.
2 J.A.S. Smith, J. Chem. Soc., (1962) 4736.
3 C.R. Kistner, J.H. Hutchinson, J.R. Doyle and J.C. Storlie, Inorg. Chem, 2 (1963) 1255.
4 E.O. Greaves, R. Bruce and P.M. Maitlis, Chem. Commun, (1967) 860.
5 (a) J.M. Jenkins and B.L. Shaw, Proc. Chem Soc., (1963) 279; (b) J.A. Osborn, F.H. Jardinc, J.F. Young and G. Wilkinson, J. Chem. Soc., A, (1966) 1711; (c) J.R. Moss and B.L. Shaw, J. Chem. Soc., A, (1966) 1793.
J. Organometal. Chem., 14 (1968) P30-P32

[^0]: ${ }^{\boldsymbol{a}}$ Measured with a Jeol JNM 4H-100 instrument using TMS as the internal standard. Resonances for phenyl protons are omitted. b It consists of a main broad peak and two satelite peaks due to coupling with ${ }^{195} \mathrm{Pt}\left(33.8 \%\right.$ abundance). ${ }^{c}$ Each peak in the doublet is fairly broad. Couplings with ${ }^{195} \mathrm{Pt}$ are not observable owing to the small S/N ratio. d Each peak splits into a septet.

