PRELIMINARY COMMUNICATION

BIS(TRIPHENYLPHOSPHINE)ALLENEPLATINUM(0) COMPLEXES

SEI OTSUKA, AKIRA NAKAMURA and KAZUHIDE TANI

Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka (Japan) (Received April 30th, 1968: in revised form August 29th, 1968)

The nature of phosphorus—metal bonds in low-valent post-transition metal phosphine or phosphite complexes is now well understood in terms of σ -donation from the ligand reinforced with a synergic π -back donation from the metal. In only a few cases, however, information such as the bond length or force constant is available to support the π -bond character. We found that phosphine(allene)platinum(0) complexes, Pt(allene)-(PR₃)₂, are a particularly relevant system for the NMR spectroscopic studies to obtain further insight into the nature of the Pt—P bond as well as of the Pt—allene bonding.

Bis(triphenylphosphine) (allene)platinum(0), $[Pt(C_3H_4)(PPh_3)_2]$ (I), was obtained as colorless, thermally stable needles, m.p. 152–154° (dec.), when *cis*- $[PtCl_2(PPh_3)_2]$ was reduced with hydrazine hydrate in the presence of allene at 70–80°, in an autoclave using 95% ethanol as a solvent. Similarly, bis(triphenylphosphine)(1,3-diphenylallene)-platinum(0), $[Pt(PhCH=C=CHPh)(PPh_3)_2]$ (II), was obtained as bright yellow cubic crystals m.p. 170–182° (dec.). Molecular weight measurements and elemental analyses for these two complexes agree well with calculated values.

TABLE 1

Compound		Chem. shift $ au$ (multiplicity)	Coupling constant (cps)
CH ₂ =C=CH ₂ (free) I	Hc Hp Ha	5.30 (singlet) 7.98 (triplet) ^b 5.46 (doublet) ^c 4.00 (doublet) ^c	J(Pt-H ^a)= 65 J(P ^a -H ^b)=12.5 J(P ^a -H ^c)= 22.5
PhCH≃C≃CHPh (free) II	H _a	3.44 (singlet) 6.25 (triplet) ^{b,d} 4.18 (doublet) ^c	$J(Pt-H^{a}) = 6S$ $J(P^{a}-H^{a}) = 5.5$ $J(P^{b}-H^{a}) = 9.5$ $J(H^{a}-H^{b}) = 3.0$ $J(P^{a}-H^{b}) = 12.5$

100 Mc NMR SPECTRA⁴ OF Pt(allene)(PPh₃)₂ IN CDCl₃ AT 22.5°

^a Measured with a Jeol JNM 4H-100 instrument using TMS as the internal standard. Resonances for phenvl protons are omitted. ^b It consists of a main broad peak and two satellite peaks due to coupling with ¹⁹⁵Pt(33.8% abundance). ^c Each peak in the doublet is fairly broad. Couplings with ¹⁹⁵Pt are not observable owing to the small S/N ratio. ^d Each peak splits into a septet.

J. Organometal, Chem., 14 (1968) P30-P32

The IR spectrum of I (nujol mull) shows a weak band at 1680 cm⁻¹ due to ν (C=C=C) of coordinated allene, and a strong one at 855 cm⁻¹ assignable to δ (=CH₂). These bands are absent in II (The similar IR spectral characteristic is found in the related Rh^I(-)allene complexes¹).

The NMR spectra for I and II summarized in Table 1 are best explained by a square planar structure depicted below. It should be noted that the uncoordinated olefinic carbon atom with H^b and R^c also lies in the same plane.

I, $R^a = H^a$, $R^c = H^c$ II, $R^a = R^c = C_6 H_5$

The highest field resonance for I occurs at τ 7.98 showing a large ¹⁹⁵ Pt-¹H coupling constant (62.5 cps) comparable to values for the Pt--CH₃ coupling constant as found in methylplatinum complexes²⁴. The large up-field shift from free allene ($\Delta \tau = 2.7$) as well as the large spin-spin coupling with ¹⁹⁵ Pt are consistent with the idea of enhanced σ -bonding between Pt and the two carbons of allene. The signals at τ 5.46 and τ 4.00 assigned to H^b and H^c, respectively, are both split into doublets by coupling with ³¹ P (S = 1/2). The doublet splitting affords support for the square planar structure but not for a tetrahedral structure. The latter structure involving two equivalent phosphorus nuclei requires triplet splitting for the H^b and H^c resonances.

The surprisingly large coupling constant (22.5 cps) for the long-range interaction between P^a and H^c in I renders the σ -interaction mechanism unlikely for such an extended system. It appears that a $\sigma \pi$ -interaction facilitated through a conjugated π -bond system, P^a=Pt-C=C-H, will rationalize the large long-range coupling. This may be the first reported example for a $\pi(3d-5d)-\pi(2p-2p)$ conjugation that is effective for a nuclear spin interaction. The long-range coupling constant is smaller in $J(P^a-H^b)$ than in $J(P^a-H^c)$. It is to be noted that the *trans* P^a couples with the two protons more effectively than does the *cis* P^b. This is in accord with the previous observations in many octahedral or square planar complexes⁵, specifically in a structurally related complex, Pt(C₆H₅C=CCH₃) (PPh₃)₂⁴.

In the 1,3-diphenylallene complex II, the phenyl group at the uncoordinated carbon will occupy the R^c site for steric reason (The two sites at C¹ are equivalent). The proposed structure is consistent with the observed chemical shift (τ 4.18) of the lower field absorption that is assigned to H^b; if the phenyl group occupies the H^b site a resonance for the proton at the R^c site would appear at a lower field than that for the free ligand (τ 3.44) as in I. The structure receives further support from coupling schemes of the H^b proton shown in Table 1.

The substitution of two protons in I with phenyl groups simplifies the spectrum and the septets at $\tau 6.25$ arise from overlap of the splittings due to coupling of H^a with H^b, P^a, and P^b. Here again, the long-range coupling between H^b and P^a (12.5 cps) is greater than the coupling of H^a with the two phosphorus atoms. If the proposed structure is correct, as it seems to be, the Pt atom may be regarded formally as a $5d^8$ ion assuming a rigid planar tetra-coordinated configuration. This view explains the thermal stability observed for I and II.

Studies on the effect of nature of phosphorus-containing ligands upon these spinspin interactions in this type of complexes are now in progress.

REFERENCES

- 1 S. Otsuka, A. Nakamura and K. Tani, to be published.
- 2 J.A.S. Smith, J. Chem. Soc., (1962) 4736.
- 3 C.R. Kistner, J.H. Hutchinson, J.R. Doyle and J.C. Storlie, Inorg. Chem., 2 (1963) 1255.
- 4 E.O. Greaves, R. Bruce and P.M. Maitlis, Chem. Commun., (1967) 860.
- 5 (a) J.M. Jenkins and B.L. Shaw, Proc. Chem. Soc., (1963) 279; (b) J.A. Osborn, F.H. Jardine, J.F. Young and G. Wilkinson, J. Chem. Soc., A, (1966) 1711; (c) J.R. Moss and B.L. Shaw, J. Chem. Soc., A, (1966) 1793.
- J. Organometal. Chem., 14 (1968) P30-P32